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Abstract

While many issues in the area of virtual reality (VR)

research have been addressed in recent years, the con-

stant leaps forward in technology continue to push the

�eld forward. VR research no longer is focused only on

computer graphics, but instead has become even more

interdisciplinary, combining the �elds of networking,

distributed computing, and even arti�cial intelligence.

In this article we discuss some of the issues associated

with distributed, collaborative virtual reality, as well

as lessons learned during the development of two dis-

tributed virtual reality applications.

1 Introduction

The Futures Laboratory at Argonne National Lab-

oratory has been exploring what is needed to support

large-scale shared space virtual environments (VE) for

wide-area collaborations. Our research has focused on

the system architecture, software design, and features

needed to implement such environments. In this article

we discuss two prototype systems under development

at Argonne.

Shared virtual spaces are complex multiuser on-

line environments that use strong spatial metaphors

for navigation, communication and interaction scop-

ing, and object manipulation and may support 3D im-

mersive displays. They allow a direct natural form of

collaboration based on the real-world notion of spatial

collocation (e.g., many people interacting in a room).

We believe that shared virtual space can be used to

e�ectively support wide-area collaborations. Demon-

strations of limited forms of shared space collaborative

environments have shown both great potential and con-

siderable limitations of current technologies [3].

A goal of each prototype system is to produce a

research implementation that enables the exploration

of the following capabilities:

� immersion

� sharing of objects and virtual space

� coordinated navigation and discovery

� interactive control and synchronization

� interactive modi�cation of the environment

� scalable distribution of data

Motivation for these prototype implementations is

generated by our interest in shared virtual environ-

ments and by the prospect of using these systems to

support wide-area scienti�c collaborations. Addition-

ally, these systems represent the next logical step af-

ter the work done on coupling large-scale computing

to virtual environments [4]. By studying requirements

of shared virtual environment spaces, we can expand

our work to support collaboratories and collaborative

design. We are already building on technology devel-

oped in these two prototype systems for the UbiWorld

project [10] (UbiWorld is a shared virtual space that

enables users to explore issues related to ubiquitous

computing [5]).



Multiuser shared environments have been a topic of

research for many years now, from text-based spaces

to desktop graphics spaces to immersive virtual reality

[2, 8]. Other groups have focused on what is needed

for distributed collaborative environments [6, 9].

2 Experimental Environment

In this section we introduce and discuss the imple-

mentation of the Interactive Agent Environment and

ManyWorlds. The discussions will include an outline

of the architecture, implementation, and discoveries.

Both implementations use the CAVE family of dis-

play devices. The CAVE provides a wide variety of

display options, ranging from the desktop to the fully

immersive four-wall CAVE environment [1].

2.1 Interactive Agent Environment

The Interactive Agent Environment (IAE) system

touches on each of the capabilities outlined in the in-

troduction. In addition, this prototype implementa-

tion of IAE provides the architecture for testing and

evaluating the separation of representation from be-

havior and computation. It allows for intelligent ob-

jects to be designed without concern for how they will

be represented. It also adds a dynamic nature to the

virtual world. While not designed as a collaborative

space, IAE supports collaboration by the fact that it

is a shared environment. The IAE system allows for

an arbitrary number of display devices to connect to

the world server and participate in the shared virtual

space. An arbitrary number of computational entities

are also allowed to connect to the world server, provid-

ing dynamic behavior within the virtual world.

Additionally, the IAE prototype environment allows

for exploring the use of arti�cial agents within the vir-

tual world. These agents could be used to annotate the

virtual world and act as helpers to users. The arti�cial

agent can act as a tour guide or help �lter/navigate

data.

2.1.1 Architecture

Figure 1 shows a high-level overview of the architecture

of the IAE system. The IAE system has three major

components: a world server, display devices, and ac-

tive objects. Each of the three components can be run

on di�erent machines, and multiple instances of the

display devices and active objects can be invoked.

The world server acts as the central connection point

within IAE. The world server supports the loading

of VRML representations of objects into the virtual
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Figure 1. Architecture Overview of the Inter-
active Agent Environment

world, communication, management of the environ-

ment, and sensing for active objects. An important

notion within IAE is that of active and inactive ob-

jects. Active objects are objects associated with dis-

tributed computational processes and will be discussed

in more detail below. Inactive objects are all other ob-

jects within the virtual world that add to the realism.

The display devices provide the users a view into

the virtual world. Currently there are two supported

display devices: the CAVE family of VE displays and

a simple two-dimensional viewer. The CAVE viewers

enable the user to experience the world in its full three-

dimensional representation. The two-dimensional ver-

sion is a top-down view on the world.

A unique feature of IAE is the use of computational

entities to control the active objects. Active objects

are processes running on the same system as the world

server or on a remote system. Active objects imple-

ment behaviors associated with the graphical represen-

tations of objects in the world. This separation allows

active objects to be associated at runtime with a vari-

ety of di�erent graphical shapes.

Example: if the active object is a follower (an agent

that follows some given object), it will|based on the

size and shape of its graphical representation|be able

to navigate in the appropriate manner (i.e., small ob-

ject �ts through narrow opening; large object goes

around).

Active objects in IAE are currently written in Lisp,

but other languages can be supported as long as they

implement the world server connection model.
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Figure 2. World Server Diagram

2.1.2 Implementation

The world server is constructed from a variety of dif-

ferent object-oriented patterns implemented in C++.

These patterns represent various components within

the world server. The world server handles the manage-

ment of display and computation connections (see Fig-

ure 2). Additionally, the world server manages physical

properties of the world and the sensing for active ob-

jects.

The distributed nature of the IAE system relies

heavily on communication and on the ability to al-

low connections from a variety of sources at varying

times. At the center is the ACE library: a toolkit that

implements fundamental design patterns for communi-

cation software and, in particular, the reactor object

[11]. The reactor object is a design pattern that sup-

ports the demultiplexing and dispatching of multiple

event handlers [12]. It is an event-driven object capa-

ble of handling multiple connection requests by invok-

ing the appropriate event handler at connection time.

As each connection occurs, an individual communica-

tion channel is established between the server and the

connecting client, be it a display device or a computa-

tional process.

The communication channel between the graphical

display devices and the world server is principally one

way, with the world server streaming the list of objects

needing to be rendered each update. If the user wants

to move from the role of passive observer to that of an

active one, the display device must also stream infor-

mation on position and orientation of the user back to

the world server.

The communication channel between the computa-

tional processes (active objects) and the world server

is a two-way channel, with information about the po-

sition and objects that an individual process can sense

being sent out by the world server. The world server

then receives back information for all the active ob-

jects' physical parameters. Currently these values are

rotation and translation speeds, but in the future could

include joint angles and speeds, etc.

The ACE reactor plays a role in the computation

process of the world server. By using the event-

handling capabilities of the reactor object, timer events

are registered with the reactor at startup. These timer

events, which happen at regularly scheduled intervals,

update the graphics devices and the world simulation,

as well as send the appropriate information to the ac-

tive objects.

The active objects are driven by remote processes

currently written in Lisp and running on a remote ma-

chine (see Figure 3). The world server reports to each

active object, via its own private communication chan-

nel, the various objects (both active and inactive) it

can see, as well as that active objects' location within

the world. Based on this information and on its own

goals, the active object process then decides what its

next course of action should be. Currently, the active

objects only try to avoid other objects while moving

toward some prede�ned location. In general, the ac-

tive objects could be any computational source that

followed the speci�ed format for connections and out-

put. It should be noted that the information sent from
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the world server to the active object described above is

particular to that instance of an active object. Other

active objects may need to know only if a user is within

a certain range or if someone is holding an active ob-

ject.

Active Object:

Translation and rotation speeds

X,Y,Z position in the world, as well as objects seen

The lisp version of
the active object

runs in a tight loop
waiting for input,

processing it, and
generating output

Figure 3. Active Object Diagram

The graphics capability of the IAE system is ex-

ible, depending on the user's needs and capabilities.

The di�erent display devices that connect to the world

server can be thought of as browsers. A user can con-

nect to the IAE server via a two-dimensional browser

that gives a top-down projection of the world. The two-

dimensional browser is useful in debugging the system

but also allows users with low-end hardware capabil-

ities a way to observe the world and the interactions

within it. A virtual reality browser is built on top of the

CAVE library. The VR browser displays the objects in

the world based on VRML �les associated with each

object. The server currently streams VRML �les at

regular intervals to each of the attached browsers. This

process is extremely ine�cient, particularly for the in-

active objects, which remain �xed within the environ-

ment. A caching scheme is being developed to allow the

server to update only those objects that have changed

within the environment. In general, users maintain a

passive representation within the virtual environment.

This means the users are passive observers, not repre-

sented by avatars and not seen by other users connected

to the virtual world. Users can be represented in the

world by sending back their world coordinates and ori-

entations to the world server, which then manages the

user as a active object within the world.

2.1.3 Next Step

IAE depends on VRML for the three-dimensional rep-

resentation of the objects and is currently using the

VRML 1.0 specs. With a move to VRML 2.0, inac-

tive objects could have simple yet interesting behav-

iors embedded in them by using the new 2.0 scripting

features. Since the two-dimensional browser already

generates its views based on the VRML �les, a Java-

based version can be built without much e�ort to allow

connections from Java-enabled Web pages. Finally, in

the the area of display devices, hooks could be added

to allow for true Web-based VRML browsers to attach

to the world server.

The most exciting future work will come in the area

of active objects and their associated computational

entities. Using the prototype system, one can start to

build arti�cial agents that enhance the environment.

One example would be a virtual librarian that is able

to help users navigate a large database, leading the

users to areas of interest. A second example would

be a virtual cameraman, whose task is to record and

archive the users' experiences within the environment.

Beyond the use of the active objects to model arti�-

cial agents, the active objects could be supercomputing

simulations of various events that attach to the world

server. Not only does this add to the richness of the

virtual world, but it provides substance for the arti�cial

agents to work on and explore.

2.2 ManyWorlds

The ManyWorlds system is a prototype implementa-

tion of an architecture for managing multiuser shared

virtual reality experiences. The intent of the Many-

Worlds architecture is to allow arbitrary applications

to contribute content to a ManyWorlds session, to al-

low multiple users to connect to a ManyWorlds ses-

sion using clients with a wide variety of capabilities,

and to do so in a scalable manner. A long-term goal

of ManyWorlds is to provide a scalable tele-immersion

environment to support collaborative work.

2.2.1 Architecture

The basis for a shared space in ManyWorlds is an ab-

straction we call the stage. All visualization and inter-

action in ManyWorlds take place in a stage; a Many-

Worlds session may have multiple stages, and users

may switch from stage to stage at will. The entities

visualized in the stage take the form of VRML objects,

as in the Interactive Agents Environment. We will re-

fer to these VRML objects as the content present on

the stage.

4



A stage is viewed by a ManyWorlds browser. When

a browser is directed to a stage, it will begin receiv-

ing updates of the content of the stage. Currently, two

browsers are implemented in the ManyWorlds proto-

type. One is a CAVE browser, implemented by using

Open Inventor and the CAVE library. It allows the

user to navigate through the space managed by the

stage, visualizing the objects in the stage in three di-

mensions. The other browser is a Web gateway, which

allows connections from traditional Web-based VRML

browsers.

Figure 4 provides an overview of a typical Many-

Worlds session. At the center of the session is the stage.

The stage mediates the transfer of data between con-

tent sources and sinks. Sources of data shown here

include simulation, CAVE clients, static scenery, and

an archival playback session. Sinks of data include the

CAVE clients, a Web gateway, and an archival record-

ing session.

Simulation

Web
Gateway

Recorder

CAVE
Client

Stage CAVE
ClientPlayer

Static
Scenery

Figure 4. A Typical ManyWorlds Session

Clients connecting to a stage may contribute content

to a stage, monitor the contents of a stage, or both.

Examples of clients contributing content include scien-

ti�c applications modi�ed to generate their output as

VRML data sets and applications that provide sets of

static or slowly changing VRML objects as background

scenery for a stage. Clients that monitor the content of

a stage include the various browsers that users use to

visualize a stage and world recorders that archive the

interactions in a stage for later review.

2.2.2 Implementation

The current ManyWorlds prototype is implemented

largely in Perl, making heavy use of the object-oriented

programmingmechanisms in the Perl language. Hence,

it is natural to use the distributed object programming

paradigm in the implementation of the communication

between the components of the ManyWorlds system.

Communications between objects residing in di�er-

ent processes is achieved by the use of a Perl binding

of the Nexus runtime library. We refer to this com-

bination of Perl and Nexus as nPerl. The nPerl sys-

tem handles the marshalling of method call arguments

on the sending system and their unmarshalling on the

remote system, as well as handling the actual invoca-

tion of the remote method call and the return of its

return value to the caller. This marshalling leverages

the support Nexus provides for passing data among a

heterogeneous collection of computers.

The use of nPerl also provides a clean mechanism for

supporting the dynamic nature of the ManyWorlds sys-

tem. Through the Nexus dynamic attachment mecha-

nism, a new observer or data provider can connect to a

stage and take part in the action there. Through nPerl

we can also cleanly and robustly handle abnormal ter-

mination of parts of the ManyWorlds system.

The communications involved in the distribution

and update of VRML objects from content providers to

observers is most naturally cast as a form of multicast.

Each provider maintains a multicast group into which

it injects updates of the data it is providing. Observers

that wish to receive updates from a provider subscribe

to the provider's multicast group when they join the

stage. Information about the set of providers present

on a stage is propagated via a multicast group managed

by the stage itself.

Client A Client B

Client A Client B

Web
Gateway

Simulation

Simulation

Multicast
group

ManyWorlds
object

Figure 5. Data Flows in ManyWorlds

The current ManyWorlds prototype uses a simple,
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replicated unicast implementation of multicast (see

Figure 5). This method has the advantage that it

makes no assumptions about the network infrastruc-

ture on which the system is executing. However, it

scales poorly. The architecture has been designed such

that alternative implementations of multicast commu-

nications can be added to the system with minimum

disruption. Providers also have the freedom to specify

the form of multicast implementation required for their

particular needs. For example, the avatar provider in

a CAVE viewer would likely want to have a reliable

multicast distribution of the VRML description of the

avatar, but the position updates of the avatar can use

an unreliable multicast service.

The ManyWorlds architecture defers the actual com-

putation involved in the application to the content

providers. Content provider applications interact with

a ManyWorlds session via an API that provides the

functionality required for the application to join a

stage, announce its presence, and supply data to any

observers.

An example of a ManyWorlds content provider is

the \world in a directory" client. This client scans a

speci�ed directory looking for VRML data �les. When

a �le appears, it is added to the set of VRML data that

is supplied to the ManyWorlds session. Changes to the

�le result in VRML data updates in the session.

The directory client has been used to interface a

PETSc application [7], running on a multiprocessor

workstation, to a ManyWorlds session. The PETSc

application itself knows nothing of ManyWorlds; it is

simply con�gured to place its output data in VRML

format in the directory being scanned by the directory

client. The result, as seen by a ManyWorlds browser,

is the output of the simulation as it evolves over time.

We have implemented two di�erent ManyWorlds

browsers. The �rst is a CAVE library-based applica-

tion with an nPerl front end that communicates with

the rest of the ManyWorlds system, and a C++ and

Open Inventor-based backend that handles the caching

of VRML objects for rendering, as well as user input

and navigation. This client acts as both a data viewer

and a content provider. The content served to the rest

of the system consists of a user-de�ned avatar, placed

in virtual space according to the user's position in the

CAVE itself, and the input of the navigation system

within the application.

The second client is a World Wide Web gateway.

The gateway acts as an HTTP server as well as a data

viewer. When a request for the VRML page represent-

ing the stage arrives, the gateway composes the VRML

objects currently in the world into a single VRML page

suitable for viewing with a Web browser. It also inserts

VRML camera de�nitions corresponding to the loca-

tions of any CAVE users, allowing the viewer of the

stage via the Web to jump to the viewpoint of any of

the CAVE users.

2.2.3 Next Step

Nothing in the ManyWorlds architecture, other than

the display engines, restricts the data being shared to

VRML. We anticipate using non-VRML media to aug-

ment the basic VRML structure of a shared VR session.

For example, the CAVE browser could advertise audio

and video streams to the world. Clients capable of

viewing these media would negotiate with the browser

to receive the streams. This is an example of the power

of the abstract, application-level multicast scheme. In

this case, the application would likely use IP multicast

as the implementation of the abstract multicast, lever-

aging the existing multicast toolset.

An important method of visualizing scienti�c data

sets is volume visualization. This is a very computa-

tionally expensive procedure to use, but is possible on

the hardware used in the CAVE. Thus, we would like

to add support for volume visualization as another al-

ternative ManyWorlds medium. We anticipate that a

scienti�c application might provide alternative forms

of its output data: volume datasets for the high-end

CAVE clients, and a less-detailed VRML dataset for

other clients.

An important part of collaboration is the use of his-

tory. We have designed the ManyWorlds architecture

such that it would be possible to transparently archive

a ManyWorlds session. A recording application could

join a stage as a data viewer and record all interactions

in the stage. Later, a playback application could create

a stage for the playback of the session and con�gure it-

self as proxy data provider for all of the original data

sources. The viewers of the system would be able to

navigate through the playback, observing the previous

objects and interactions, as well as interacting with the

other viewers of the playback.

Another important means of collaboration is what

some call the show-me style: a knowledgeable user of an

application can guide others through the intricacies of

the application to �nd the areas of interest. We plan

to implement a form of this capability in the CAVE

browser as a exible means of navigation, where the

user can slave his viewpoint to that of another user.

We will also investigate the use of active objects in

the world that can have an e�ect on the navigation of

the users browsing near the space. A simple example

is gravity: we may wish to de�ne a region in the vir-

tual space that a�ects the navigation of users passing
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through the space as gravity does. Another example

would be to give the users of a ow-�eld simulation the

ability to attach themselves to a particle in the ow

and follow its path through the �eld.

We would like to allow a very rich interaction be-

tween users of the virtual space and the objects in the

space. Because the architecture of the ManyWorlds

system is based on a exible distributed object system,

we can de�ne arbitrarily complex behaviors between

objects on a stage and between the browser and objects

on the stage. As a simple example, we could cause the

CAVE wand's selection of an object to trigger a behav-

ior de�ned by the object. We could also de�ne shared

user interface objects, such as popup menus, that have

a form in the three-dimensional shared space. Support

for the movement of objects in the space also falls into

this category.

3 Conclusions

We have begun the design and implementation of

two shared space systems. The two systems share many

architectural concepts and features, and both are in-

tegrated with the CAVE environment; however, they

have di�erent goals. The Interactive Agent Environ-

ment supports development and experimentation with

active objects and cooperative tasking and provides a

linkage to intelligent systems technology that can be

used to augment the shared environment. ManyWorlds

is focused on scalability and exploring the communi-

cations and VR software infrastructure to support the

rapid construction of spaces for collaborative data anal-

ysis, design, and learning. Neither system has all the

features we envision for an ultimate production system.

Our near-term goal is to explore a variety of imple-

mentation strategies and mechanisms that can support

large-scale collaborative environments. A longer-term

goal is to develop a common software base for building

a variety of shared space environments and to explore

their use in large-scale scienti�c applications.
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